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Generalized T2 Test for Genome Association Studies
Momiao Xiong, Jinying Zhao, and Eric Boerwinkle
Human Genetics Center, University of Texas–Houston, Houston

Recent progress in the development of single-nucleotide polymorphism (SNP) maps within genes and across the
genome provides a valuable tool for fine-mapping and has led to the suggestion of genomewide association studies
to search for susceptibility loci for complex traits. Test statistics for genome association studies that consider a
single marker at a time, ignoring the linkage disequilibrium between markers, are inefficient. In this study, we
present a generalized statistic for association studies of complex traits, which can utilize multiple SNP markers2T
simultaneously and considers the effects of multiple disease-susceptibility loci. This generalized statistic is a2T
corollary to that originally developed for multivariate analysis and has a close relationship to discriminant analysis
and common measure of genetic distance. We evaluate the power of the generalized statistic and show that2T
power to be greater than or equal to those of the traditional test of association and a similar haplotype-test2x

statistic. Finally, examples are given to evaluate the performance of the proposed statistic for association studies2T
using simulated and real data.

Introduction

Lack of tangible success of genetic linkage analyses for
mapping of multifactorial trait loci with small-to-mod-
erate effects, coupled with progress in the development
of detailed SNP maps of the human genome (Gray et al.
2000), has led to the suggestion of population-based
genomewide association studies (Risch and Merikangas
1996) that are based on linkage disequilibrium (LD).
Traditional population-based association studies com-
pare marker-allele frequencies between cases and control
subjects, separately for each marker. However, when a
collection of SNP markers is available, using only a sin-
gle marker each time and ignoring the nonindependence
among markers are inefficient. In addition, it is well
known that complex diseases are influenced by multiple
genes, requiring the development of statistical methods
for evaluation of several trait loci collectively (Longmate
2001). Recently, discriminant analysis (Li et al. 2000),
logistic regression (Czika et al. 2000), decision trees
(Zhang and Bonney 2000), and neural networks (Bhat
et al. 1999; Sherriff and Ott 2001) have been applied
to genetic association studies using multiple marker loci.
However, such methods provide only classification ac-
curacy as a measure of significance—rather than P val-
ues, which are widely used to show significant evidence
of association in the traditional context. Therefore, there
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is a need to describe the relationship between classifi-
cation methods and traditional statistical testing.

In this article, we present, for population-based as-
sociation studies of complex diseases, a generalized

test that simultaneously utilizes multiple SNP mark-2T
ers. The power of the generalized statistic for the2T
detection of a disease locus (or loci) will be evaluated,
as will be comparability of the genotype and hap-2T
lotype statistics.2T

In addition, we formulate the problem of identifica-
tion of SNP markers or a combination of SNP markers,
which make the largest contribution to disease risk, as
a combinatorial optimization problem, and we develop
efficient search algorithms. Finally, examples will be
given to illustrate the applications of the proposed 2T
statistic to association studies.

Test Statistic

Consider a design in which cases from an affectednA

population and control subjects from a comparablenĀ

unaffected population are sampled. Suppose that there
are J markers that have been typed in the sample of cases
and control subjects. The jth marker has alleles andBj

, with population frequencies and , respectively.b P Pj B bj j

Define an indicator variable for the genotype of the jth
marker for the ith individual from the affected popu-
lation:

1 B Bj j

X p 0 B b .ij j j{ }
�1 b bj j
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Similarly, we define an indicator variable, , for an in-Yij

dividual from the unaffected population. Let

T T… …( ) ( )X p X , ,X , Y p Y , ,Y ;i i1 iJ i i1 iJ

¯n nA A1 1¯ ¯X p X , Y p Y ;� �j ij j ijn n ¯ip1 ip1A A

T T… …¯ ¯ ¯ ¯ ¯ ¯( ) ( )X p X , ,X , Y p Y , ,Y .1 J 1 J

The pooled-sample variance-covariance matrix of the
indicator variables for the marker genotypes is defined
as

¯n nA A1 T T¯ ¯ ¯ ¯S p (X � X)(X � X) � (Y � Y)(Y � Y) .� �[ ]i i i in � n � 2¯ ip1 ip1A A

Hotelling’s (1931) statistic is then defined as2T

n n ¯A A2 T �1¯ ¯ ¯ ¯T p (X � Y) S (X � Y) .
n � n ¯A A

Under the null hypothesis that LD between any mark-
er being tested and a disease locus does not exist, the
covariance matrix of the indicator variables for the
marker genotypes of the individuals from the affected
population, , and the covariance ma-S p Cov (X ,X )A i i

trix of indicator variables for the marker genotypes of
the individuals from the unaffected population, S pĀ

, are equal. Therefore, when the sample sizeCov (Y ,Y )i i

is large enough to allow asymptotic theory to apply,
under the null hypothesis,

n � n � J � 1¯A A 2T
J(n � n � 2)¯A A

is asymptotically distributed as a central F distribution
with J and degrees of freedom. Undern � n � J � 1¯A A

the alternative hypothesis that there is at least one
marker showing LD with a disease locus, the covariance
matrices and are no longer equal andS S ¯A A

n � n � J � 1¯A A 2T
J(n � n � 2)¯A A

is not asymptotically distributed as a noncentral F dis-
tribution. In this case, it can be shown that is as-2T
ymptotically distributed as a distribution.2x(J)

Power Evaluation

Noncentrality Parameter

To evaluate power, we need to calculate the noncen-
trality parameter of the distribution of the statistic2 2x T(J)

under the alternative hypothesis. We begin by computing

the allele frequencies in the affected and unaffected pop-
ulations. Consider a disease locus with alleles D and d.
The alleles D and d have population frequencies andPD

, respectively. Let , , and be the penetrance ofP f f fd DD Dd dd

the genotypes , , and , respectively. Let de-DD Dd dd PA

note the prevalence of the disease in the population.
Then, is given byPA

2 2P p f P � 2f P P � f P .A DD D Dd D d dd d

Let and be the frequencies of marker allele¯P (A) P (A)B B

B in the affected and unaffected populations, respec-
tively. Let , , and be the frequencies of hap-P P P PBD Bd bD bd

lotypes BD, Bd, bD, and bd, respectively. The frequency
is given byP (A)B

P (A) p P(BFA)B

(P f � P f )P � (f P � f P)PD DD d Dd BD Dd D dd d Bdp
PA

Similarly, we have

¯ ¯ ¯ ¯(P f � Pf )P � (f P � f P)PD DD d Dd BD Dd D dd d Bd¯P (A) p ,B 1 � PA

where , , and .¯ ¯ ¯f p 1 � f f p 1 � f f p 1 � fDD DD Dd Dd dd dd

Consider the jth marker and the th marker. Let′j
and be the frequencies of haplotype¯P (A) P (A)′ ′B B B Bj j j j

in the affected and unaffected populations, respec-B B ′j j

tively. If Hardy-Weinberg equilibrium is assumed, then
it is easy to see that (see Appendix A)

¯¯ ¯m p E[X ] � E[Y ] p 2[P (A) � P (A)] ,j j j B Bj j

Cov(X ,X ) p 2d (A) ,′ ′1j 1j jj

Var (X ) p 2P (A)P (A) ,1j B bj j

¯ ¯Var (Y ) p 2P (A)P (A) ,1j B bj j

¯Cov (Y ,Y ) p 2d (A) ,′ ′1j 1j jj

where

¯d (A) p P (A) � P (A)P (A),d (A)′ ′′ ′jj B B B B jjj j j j

¯ ¯ ¯p P (A) � P (A)P (A) .′ ′B B B Bj j j j
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Figure 1 Power curves of the test and the test, with sig-2 2T x

nificance level , as a function of allele frequency, witha p 0.0001
penetrances assumed to be , , and and withf p 0.4 f p 0.2 f p 0.111 12 22

sample size .n p n p 100¯A A

Define

…Var (X ) Cov (X ,X ) Cov (X ,X )11 11 12 11 1J
…Cov(X ,X ) Var (X ) Cov (X ,X )11 12 12 12 1JS p ,A … … … …[ ]
…Cov(X ,X ) Cov (X ,X ) Var (X )11 1J 12 1J 1J

…Var (Y ) Cov (Y ,Y ) Cov (Y ,Y )11 11 12 11 1J
…Cov(Y ,Y ) Var (Y ) Cov (Y ,Y )11 12 12 12 1JS p .Ā … … … …[ ]
…Cov(Y ,Y ) Cov (Y ,Y ) Var (Y )11 1J 12 1J 1J

It is clear that the covariance matrices and dependS S ¯A A

on the pairwise LD between the marker and trait loci.
When , the noncentrality parameter of the(n /n ) r aĀ A

statistic under the alternative hypothesis is given by2T

�1n n 1 a¯A A Tl p m S � S m ,¯A A( )n � n 1 � a 1 � a¯A A

where . LetTm p [m , … ,m ]1 J

�11 a2 TG p m S � S m .¯A A( )1 � a 1 � a

can be considered to be a genetic-distance measure2G
between two populations that is similar to that proposed
by Balakrishnan and Sanghvi (1968). Intuitively, then,
the noncentrality parameter l can be expressed as a func-
tion of this genetic distance between the case and control
populations;—that is, . In the case2l p (n n /n � n )G¯ ¯A A A A

in which all pairwise LD is equal to zero, is reduced2G
to

J 2¯[P (A) � P (A)]B B2 j jG p 4 ,�
2 ¯ ¯jp1 [P (A)P (A) � aP (A)P (A)]B b B b1�a j j j j

and the noncentrality parameter l is

J 2¯2n n [P (A) � P (A)]¯A A B Bj jl p .�
1 a ¯ ¯n � n ¯ jp1 P (A)P (A) � P (A)P (A)A A B b B b1�a 1�aj j j j

For a single marker, we have

2¯[P (A) � P (A)]B B2G p 4 ¯ ¯2P (A)P (A) 2aP (A)P (A)B b B b�1�a 1�a

and

2¯2n n [P (A) � P (A)]¯A A B B
l p .

1 a ¯ ¯n � n ¯ P (A)P(A) � P (A)P(A)A A B b B b1�a 1�a

Therefore, the noncentrality parameter and power de-

pend on the sample size and the genetic distance, which,
in turn, are a function of allele frequencies and LD be-
tween the marker and trait loci.

The classic test statistic for a single-marker case-con-
trol study is given by (see Chapman and Wijsman 1998)

2 2ˆ ˆ ˆ ˆ¯ ¯[P (A) � P (A)] [P (A) � P (A)]B B b bT p 2n � ,c { }ˆ ˆ ˆ ˆ¯ ¯P (A) � P (A) P (A) � P (A)B B b b

where , , , and are the correspond-ˆ ˆ ˆ ˆ¯ ¯P (A) P (A) P (A) P (A)B B b b

ing observed allele frequencies. Its noncentrality param-
eter, , is given bylc

2 2¯ ¯[P (A) � P (A)] [P(A) � P(A)]B B b b
l p 2n � .{ }c ¯ ¯P (A) � P (A) P(A) � P(A)B B b b

It can be shown (see Appendix B) that . Therefore,l � lc

for case-control association studies, the proposed sta-2T
tistic has higher (or equivalent) power than does the
classic statistic. Figure 1 compares the power, for de-Tc

tection of a disease gene, of the statistic and the classic2T
statistic. From figure 1, we can see that, in all cases,2x

the power of the statistic is higher than that of the2T
classic statistic. However, when the allele frequencies2x

are small, the differences in the power of these two sta-
tistics are very small. It can be shown that, even in more
complicated situations, such as multiple marker and trait
loci, the statistic has higher power than does the2T
classic statistic (data not shown).2x
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Table 1

Penetrance of Given Genotypes for Six Two-
Locus Disease Models

MODEL AND LOCUS D

LOCUS d

d d1 1 d d1 2 d d2 2

Dom Dom:∪
D D1 1 f f f
D D1 2 f f f
D D2 2 f f 0

Dom Rec:∪
D D1 1 f f f
D D1 2 f f f
D D2 2 f 0 0

Rec Rec:∪
D D1 1 f f f
D D1 2 f 0 0
D D2 2 f 0 0

Epistasis or Dom Dom:∩
D D1 1 f f 0
D D1 2 f f 0
D D2 2 0 0 0

Threshold:
D D1 1 f f 0
D D1 2 f 0 0
D D2 2 0 0 0

Modifying:
D D1 1 f f f
D D1 2 f 0 0
D D2 2 0 0 0

NOTE.—Adopted from Fan et al. (in press). f
is a penetrance.

Figure 2 Power curves of the test, with significance level2T
, as a function of allele frequency, in the case of Doma p 0.0001 ∪

Dom, Dom Rec, Rec Rec, epistasis, threshold, and modifying∪ ∪
models, when , , and are assumed.n p n p 100 P p P f p 0.6¯A A D d1 1

Two-Disease-Loci Model

To further evaluate the power of the statistic, we2T
consider two-locus disease models. Assume that there
are two disease loci, D and d. Each disease locus has
two alleles. The frequencies of the alleles and atD D1 2

disease locus D and of the alleles and at diseased d1 2

locus d can be denoted by , , , and , respec-P P P PD D d d1 2 1 2

tively. The frequencies of the genotypes andD D d du k lv

in the disease and normal populations are denoted by
and , respectively. The penetrance of the geno-P PD D d du k lv

types will be denoted by . Then, the prev-D D d d fu k l u klv v

alence of the disease in the population is given by

P p f P P � f P P � f P PA 1111 D D d d 1112 D D d d 1122 D D d d1 1 1 1 1 1 1 2 1 1 2 2

�f P P � f P P � f P P1211 D D d d 1212 D D d d 1222 D D d d1 2 1 1 1 2 1 2 1 2 2 2

�f P P � f P P � f P P .2211 D D d d 2212 D D d d 2222 D D d d2 2 1 1 2 2 1 2 2 2 2 2

Denote the indicator variables for the genotypes of the
first and second markers for the first individual from the
affected population and for the first individual from the

unaffected population by , , , and , respec-X X Y Y11 12 11 12

tively. Let

T{ }m p E[X ] � E[Y ],E[X ] � E[Y ] ,11 11 12 12

and let

Var (X ) Cov (X ,X )11 11 12S p ,A [ ]Cov (X ,X ) Var (X )12 11 12

Var (Y ) Cov (Y ,Y )11 11 12S p .Ā [ ]Cov (Y ,Y ) Var (Y )12 11 12

The elements of the vector m and of the variance-covar-
iance matrices and are given in Appendix C. TheS S ¯A A

noncentrality parameter of the statistic for the two-2T
locus disease model is then given by

�1n n 1 a¯A A Tl p m S � S m .¯2 A A( )n � n 1 � a 1 � a¯A A

For convenience of presentation, we assume that the two
disease loci are unlinked. Table 1 presents six types of
two-locus disease models (Neuman and Rice 1992;
Schork et al. 1993; Ott 1999). To illustrate the perform-
ance of the statistic for the detection of disease loci,2T
we plot figure 2, showing the power of the statistic2T
as a function of the allele frequency under the six types
of two-locus–disease models in table 1.
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The Haplotype Statistic2T

When haplotype information is available, we can define
an indicator variable for the alleles of the jth marker on
the ith chromosome from the affected population:

1 Bjx p .Hij { }0 bj

Similarly, we define an indicator variable for theyHij

marker alleles located on the chromosomes from the
unaffected population. Following the same development
in the genotype statistic, we can define the haplotype2T

statistic. Let2T

T T… …( ) ( )X p x , ,x , Y p y , ,y ;Hi Hi1 HiJ Hi Hi1 HiJ

¯2n 2nA A1 1¯ ¯X p x , Y p y ;� �Hj Hij Hj Hij2n 2n ¯ip1 ip1A A

T T… …¯ ¯ ¯ ¯ ¯ ¯( ) ( )X p X , ,X , Y p Y , ,Y .H H1 HJ H H1 HJ

The covariance matrix is defined as

1
S pH 2n � 2n � 2¯A A

¯2n 2nA A

T T¯ ¯ ¯ ¯# (X � X )(X � X ) � (Y � Y )(Y � Y ) .� �[ ]Hi H Hi H Hi H Hi H
ip1 ip1

The haplotype statistic is then defined as2T

4n n ¯A A2 T �1¯ ¯ ¯ ¯T p (X � Y ) S (X � Y ) .H H H H H H2n � 2n ¯A A

To compare the powers of the genotype and hap-2T
lotype , we can compare their noncentrality param-2TH

eters, because both and follow a distribution2 2 2T T xH (J)

under the alternative hypothesis. It can be shown that
the noncentrality parameter l of the statistic and the2T
noncentrality parameter of the statistic are equal2l TH H

(Appendix D).
Therefore, the power of the multilocus statistic is2T

the same as that of the haplotype statistic. Equivalence2T
of the two statistics is important, because unequivocal
haplotypes are usually not available in the majority of
case-control studies. Intuitively, this equivalence can be
attributed to the fact that the multilocus statistic con-2T
tains the same pairwise LD information in the covariance
matrices—that is, and —that is contained in theS S ¯A A

haplotypes.

Search Algorithm

To identify SNP markers (or the combination of SNP
markers) that make the greatest contribution to disease

risk and drug response, search algorithms are funda-
mental. In this study, we use a heuristic algorithm that
seeks the best combination of SNP markers for risk as-
sessment. The algorithm is based on the sequence-for-
ward floating-selection (SFFS) algorithm of Pudil et al.
(1994), which is easy to implement and which requires
minimal computation. The SFFS algorithm is based on
a sequence-forward–selection algorithm (SFS). The pro-
cedures for sequential-forward selection are as follows:

1. Compute the desired criterion value for each of the
markers, and select the marker with the best value;

2. Form all possible two-dimensional vectors that con-
tain the winner from the previous step, and compute
the criterion value for each of them and then select
the best one;

3. Form all three-dimensional vectors expanded from
the two-dimensional winners, and select the best
one; continue this process until the prespecified di-
mension of the feature vector—say, l—is reached.

The SFS algorithm requires less computational bur-
den than do other search algorithms, but it suffers from
the so-called nesting effect—that is, once a marker is
chosen, there is no way for it to be discarded in later
steps. To overcome this problem, the SFFS algorithm
was proposed. The SFFS algorithm balances the re-
quired computational time and overall optimality. (For
details, interested readers are referred to Pudil et al.
[1994] and Xiong et al. [2001].)

Examples

The proposed test was applied to a simulated data2T
set from Genetic Analysis Workshop 12 (GAW12) (Al-
masy et al. 2001). Simulated data were provided for an
isolated population founded ∼20 generations ago by 100
individuals from the general population. Unrelated cases
and control subjects ( ) were obtained by se-n :n :165¯A A

lection of founders and their spouses from 23 extended
pedigrees. Sequence data are available for a major gene,
MG6 on chromosome 6, that directly influences affec-
tion status of the individuals. MG6 is known to account
for 25.3% of disease liability, and, in the GAW12 data,
the sequence data are labeled “GENE 1.” Site 557 was
identified as the SNP closely related to disease liability.
The P values of the statistic and of the classic2 2T x

statistic, for testing the association between SNP markers
and affection status that are included within GENE 1
are summarized in table 2. We can see from table 2 that
both the test and the test identified a common set2 2T x

of SNP markers showing significant association with af-
fection status but that, in all cases, the test had smaller2T
P values than did the test. The test identified site2 2x T
557 as having the smallest P value. Since strong LD
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Table 2

Results of the T2 Test and the Classic Test, When2x

Applied to Simulated Data within Gene 1 from
GAW12

POSITION

P, BY TYPE OF TEST

2rT2 2x

557 6.6 # 10 �14 3.04 # 10�11

1553 6.6 # 10�14 3.04 # 10�11 .97
2619 6.6 # 10�14 3.04 # 10�11 .97
3456 6.6 # 10�14 3.04 # 10�11 .97
3573 6.6 # 10�14 3.04 # 10�11 .97
3742 6.6 # 10�14 3.04 # 10�11 .97
3835 6.6 # 10�14 3.04 # 10�11 .97
3853 6.6 # 10�14 3.04 # 10�11 .97
76 2.66 # 10�13 9.67 # 10�11 .99
11180 2.86 # 10�13 3.04 # 10�11

2923 6.41 # 10�13 2.44 # 10�11 .86
5757 8.019 # 10�13 2.12 # 10�11 .93
7281 8.019 # 10�13 2.12 # 10�11 .93
1478 1.199 # 10�12 4.59 # 10�11 .85
4471 1.2832 # 10�11 1.43 # 10�10 .86
4752 1.2832 # 10�11 1.43 # 10�10 .86
2942 1.5017 # 10�11 3.93 # 10�10 .91
3534 1.16706 # 10�8 5.41 # 10�8 .73
3653 1.16706 # 10�8 5.41 # 10�8 .73
5094 1.16706 # 10�8 5.41 # 10�8 .73
5244 1.16706 # 10�8 5.41 # 10�8 .73
2732 1.42422 # 10�8 3.02 # 10�8 .66
2853 1.42422 # 10�8 3.02 # 10�8 .66
596 2.28199 # 10�8 5.41 # 10�8 .73
5542 4.81874 # 10�8 1.36 # 10�7 .71
189 6.05394 # 10�8 1.40 # 10�7 .72
12185 8.64 # 10�8 3.54 # 10�7

13074 8.64 # 10�8 4.54 # 10�7

5688 8.73906 # 10�8 1.36 # 10�7 .71
4602 9.36796 # 10�8 2.12 # 10�7 .66
4688 9.36796 # 10�8 2.12 # 10�7 .66

NOTE.—Data are from Almasy et al. (2001).

exists between many SNP markers within GENE 1
(Czika et al. 2000; Huang et al. 2001), both the test2T
and the test identified a number of SNP markers that2x

had small P values.
Table 3 shows (1) the results of the test for 172T

two-SNP combinations that have P values !10�14 and
(2), of all possible three-SNP combinations, the top 15
that have the smallest P value. Two features are evident
from table 3: first, the P values of the optimal combi-
nation of two or three SNPs are smaller than that of
each single SNP in the combination; second, an indi-
vidual SNP may have a large P value, but its combi-
nations with other SNPs may have a very small P value.

The proposed test was also applied to a real data2T
set of cases of scleroderma, or systemic sclerosis (SSC)
(X. Zhou, F. K. Tan, J. D. Reveille, C. Ahn, A. Wang,
and F. C. Arnett, personal communication). SSC is a
multisystem disease of unknown etiology and is char-
acterized by cutaneous and visceral fibrosis, small-
blood-vessel damage, and autoimmune features (Meds-

ger 1997; X. Zhou, F. K. Tan, J. D. Reveille, C. Ahn,
A. Wang, and F. C. Arnett, personal communication).
Three SNP markers—SPARC 998, SPARC 1551, and
SPARC 1992—were genotyped in 20 unrelated patients
with SSC and in 75 normal control subjects from the
Oklahoma Choctaw population. It has been reported
that, in this population, (a) the clinical disease pattern
is relatively homogeneous and (b) the prevalence of SSC
in this population is high (X. Zhou, F. K. Tan, J. D.
Reveille, C. Ahn, A. Wang, and F. C. Arnett, personal
communication). To further evaluate the performance
of the test, both the test and the test were2 2 2T T x

applied to the samples from the Oklahoma Choctaw,
to examine association between the SPARC gene and
SSC. Table 4 presents the results. It is evident from table
4 that marker SPARC 998 has a -associated P value2T
that is much smaller than that associated with the classic

test. It has been reported that expression of the2x

SPARC gene is ∼2.5-fold and ∼5-fold increased, re-
spectively, when cDNA microarrays and western-blot
analysis are used, in case-control comparisons for SSC
(X. Zhou, F. K. Tan, J. D. Reveille, C. Ahn, A. Wang,
and F. C. Arnett, personal communication). The SPARC
gene is being increasingly recognized as playing a variety
of roles in tissue development, remodeling, and fibrosis
(Motamed 1999).

Discussion

In this study, we have proposed a generalized statistic2T
to relate DNA sequence variations to the occurrence of
disease. We show that the noncentrality parameter of
the statistic is larger than that of the well-known2T

statistic, indicating that the statistic has greater2 2x T
power than does the statistic. In addition, simulation2x

studies and examples with real data demonstrate that,
for case-control studies, the P value of the test is2T
smaller than that of the test.2x

The proposed generalized statistic has utility in2T
three areas of contemporary human genomic analysis.
First, there is general interest in using a dense set of
SNPs spanning each of the chromosomes, to localize
genes via genomewide association analyses. For such
association studies to be effective, it is not necessary
that the SNPs be the disease-susceptibility loci; rather,
the SNPs may aid in identification of the location of a
disease-susceptibility locus, on the basis of LD between
the SNP marker loci and nearby disease-susceptibility
loci. The magnitude of LD among SNPs (including dis-
ease-susceptibility loci) is largely determined by the re-
combination rates among loci and by stochastic sam-
pling variation, including genetic drift, migration, and
sampling. Therefore, association between an SNP (or
SNPs) and a trait of interest is generally attributable to
LD between the SNP (or SNPs) and a disease-suscep-



Xiong et al.: T 2 Test for Association Studies 1263

Table 3

Results of the T2 Test Applied to Simulated Data within GENE 1 from GAW12, When Two or Three SNPs
Are Used

1st SNP 2d SNP 3d SNP
P

FOR 1st AND 2d SNPs OR

FOR 1st, 2d, AND 3d SNPsPosition P Position P Position P

557 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�16

76 2.66 # 10�13 9150 3.55 # 10�7 2.00 # 10�15

1553 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�15

2619 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�15

3456 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�15

3573 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�15

3742 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�15

3835 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�15

3853 6.60 # 10�14 9150 3.55 # 10�7 5.55 # 10�15

557 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

1553 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

2619 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

3456 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

3573 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

3742 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

3835 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

3853 6.60 # 10�14 4315 1.83 # 10�6 6.99 # 10�15

76 2.66 # 10�13 4315 1.83 # 10�6 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 5654 1.24 # 10�7 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 5688 8.74 # 10�8 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 5721 1.24 # 10�7 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 5922 1.24 # 10�7 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 6912 1.24 # 10�7 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 7577 1.24 # 10�7 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 7654 3.76 # 10�2 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 7890 1.24 # 10�7 9150 1.40 # 10�5 1.11 # 10�16

557 6.60 # 10�14 9341 1.24 # 10�7 9150 1.40 # 10�5 1.11 # 10�16

1553 6.60 # 10�14 5757 8.02 # 10�12 7890 3.76 # 10�2 1.11 # 10�16

1553 6.60 # 10�14 7281 8.02 # 10�12 7890 3.76 # 10�2 1.11 # 10�16

557 6.60 # 10�14 1407 5.94 # 10�1 9150 1.40 # 10�5 2.22 # 10�16

NOTE.—Data are from Almasy et al. (2001).

Table 4

Test for Association between SPARC SNP Markers
and SSC in Oklahoma Choctaw, by the T2 Test and
the Test2x

MARKER

P, BY TYPE OF TEST

T2 2x

SPARC 998 .003886 .01108
SPARC 1551 .04859 .1198
SPARC 1922 .1889 .1915

NOTE.—Data are from X. Zhou, F. K. Tan, J. D.
Reveille, C. Ahn, A. Wang, and F. C. Arnett (personal
communication).

tibility locus. Such association may indicate proximity
of the inferred disease-susceptibility locus to the SNP
marker locus.

The second area in which the proposed statistic has
utility is in analysis of the spectrum of variation within
a gene, to identify sites or combinations of sites influ-
encing the trait of interest. Variations at these sites are
candidates for further experimental and functional stud-
ies. An association-mapping perspective is of little utility
in this situation, because the recombination rate among
sites is practically zero. In this case, one should first
identify the complete menu of variable sites within the
gene and then consider the ability of these sites to pre-
dict levels or prevalence rates of the phenotype of in-
terest. Recent studies (e.g., see Horikawa et al. 2000)
have indicated that there are not sufficient data to pre-
dict a priori which sites (e.g., cSNPs) are likely to predict
and which are likely not to predict.

The third application of the analysis is to the de-2T
velopment of a more comprehensive vision of the genetic
architecture (see Boerwinkle et al. 1986) of a trait. It is

widely accepted that risk to a common disease is influ-
enced by multiple genes and that these genes are inter-
acting both among themselves and with environmental
factors. One of the goals of studying the genetics of com-
mon diseases is to identify the contributing genes and
mutations and to characterize their interaction as they
combine with other agents to influence disease risk. To
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achieve this goal, it is necessary to have methods that
evaluate multiple loci—and their interactions—simult-
aneously. The proposed statistic, by virtue of the fact2T
that it simultaneously considers the effects of multiple
loci and does not assume additivity among those effects,
is an important step in this direction. Future develop-
ments will include (1) extension of the method to2T
quantitative traits and (2) stepwise site-selection proce-
dures. One aspect of considerable interest in the area of
genome association studies is the use of haplotype in-
formation. Recently, some have argued that haplotypes
may be the relevant functional unit in the consideration
of genotype-phenotype relationships (Drysdale et al.
2000). In addition, haplotype information can facilitate
a cladistic approach to genotype-phenotype relationships
(Templeton et al. 1987). In the case of the test, hap-2T
lotype information has here been shown not to lend ad-
ditional information about genotype-phenotype relation-
ships, relative to multilocus genotype information.
Initially, this result was surprising. However, on further
investigation it was realized that the sample variance-
covariance matrix, S, contains the pairwise relationships

among loci. Therefore, the statistic captures the pair-2T
wise-association information found in haplotypes.
Higher-order associations, however, may not be included
in the regular statistic, indicating that the statistic2 2T TH

may have advantages in those situations.
LD analyses and association mapping are powerful

tools for contemporary human genetics. Efforts to build
a collection of SNP markers in all genes of the human
genome (e.g., see The International SNP Map Working
Group 2001 ) and advances in genotyping technologies
bode well for large-scale applications in the near future.
Such undertakings are not without complications, how-
ever. The cost-per-locus test for SNPs remains high. The
pattern of LD may vary considerably between popu-
lations. And there is a further need to develop, evaluate,
and apply novel methods for relating the considerable
genomic information to risk of disease—methods such
as the test proposed here.2T

Acknowledgments

M.X. and J.Z. are supported by NIH grants GM56515 and
HL 5448, and E.B. is supported by NIH grant HL 5448.

Appendix A

Assuming Hardy-Weinberg equilibrium, we can calculate and as follows:¯ ¯E[X ] E[Y ]j j

2 2¯E[X ] p P (A) � P (A) p P (A) � P (A) p [P (A) � P (A)][P (A) � P (A)] p P (A) � P (A) p 2P (A) � 1 ,j B B b b B b B b B b B b Bj j j j j j j j j j j j j

¯ ¯ ¯¯E[Y ] p P (A) � P (A) p 2P (A) � 1 .j B B b b Bj j j j j

Therefore, we have

¯ ¯¯ ¯m p E[X ] � E[Y ] p 2P (A) � 1 � [2P (A) � 1] p 2[P (A) � P (A)] .j j j B B B Bj j j j

Next, we calculate the variance-covariances, and . Note thatVar (X ) Cov (X ,X )′j j j

2 2 2 2E[X X ] p P (A) � P (A) � [P (A) � P (A)] p P (A)[P (A) � P (A)] � P (A)[P (A) � P (A)]′ ′ ′ ′ ′ ′ ′ ′ ′ij ij B B B b b B b b B B B B b b b B b bj j j j j j j j j j j j j j j j j j

p P (A)[P (A)P (A) � d (A) � P (A)P (A) � d (A)] � P (A)[P (A)P (A) � d (A) � P (A)P (A) � d (A)]′ ′ ′ ′′ ′ ′ ′B B B jj B b jj b b B jj b b jjj j j j j j j j j j

p [P (A) � P (A)][P (A) � P (A)] � 2d (A) ,′′ ′B b B b jjj j j j

E[X ]E[X ] p [P (A) � P (A)][P (A) � P (A)] ,′ ′ ′ij ij B b B bj j j j

where .d (A) p P (A) � P (A)P (A)′ ′ ′jj B B B Bj j j j

Combining the above equations yields . It is not difficult toCov (X ,X ) p E[X X ] � E[X ]E[X ] p 2d (A)′ ′ ′ ′ij ij ij ij ij ij jj

see that . Similarly, we have2 2 2 2 2Var (X ) p E[X ] � (E[X ]) p P (A) � P (A) � [P (A) � P (A)] p 2P (A)P (A)ij ij ij B b B b B bj j j j j j

.¯ ¯ ¯Var (Y ) p 2P (A)P (A), Cov (Y ,Y ) p 2d (A)′ ′ij B b ij ij jjj j
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Appendix B

Note that and . Thus,¯ ¯P(A) p 1 � P (A) P(A) p 1 � P (A)b B b B

2 2¯ ¯[P (A) � P (A)] [P (A) � P (A)] 1 1B B B B 2¯l p 2n � p 2n[P (A) � P (A)] �{ }c B B [ ]¯ ¯ ¯ ¯P (A) � P (A) P(A) � P(A) P (A) � P (A) P(A) � P(A)B B b b B B b b

2¯ ¯ ¯2n[P (A) � P (A)] [P (A) � P(A) � P (A) � P(A)]B B B b B bp .¯ ¯[P (A) � P (A)][P(A) � P(A)]B B b b

However, , which implies that2 2 ¯ ¯P (A) � P (A) � 2P (A)P (A)B B B B

¯ ¯ ¯ ¯ ¯ ¯P (A)P(A) � P (A)P(A) p P (A)[1 � P (A)] � P (A)[1 � P (A)] p P (A) � P (A) � 2P (A)P (A)B b B b B B B B B B B B

2 2¯ ¯ ¯ ¯� P (A) � P (A) � P (A) � P (A) p P (A)P(A) � P (A)P(A) .B B B B B b B b

Therefore, we have

¯ ¯ ¯ ¯ ¯ ¯[P (A) � P (A)][P(A) � P(A)] p P (A)P(A) � P (A)P(A) � P (A)P(A) � P (A)P(A)B B b b B b B b B b B b

¯ ¯ ¯ ¯ ¯ ¯� P (A)P(A) � P (A)P(A) � P (A)P(A) � P (A)P(A) p 2[P (A)P(A) � P (A)P(A)] .B b B b B b B b B b B b

It follows that

2 2¯ ¯4n[P (A) � P (A)] 2n[P (A) � P (A)]B B B B
l � p .c ¯ ¯ ¯ ¯2[P (A)P(A) � P (A)P(A)] P (A)P(A) � P (A)P(A)B b B b B b B b

But, when , l is reduced ton p n ¯A A

2 2¯ ¯n 4[P (A) � P (A)] 2n[P (A) � P (A)]B B B B
l p p � l .c¯ ¯ ¯ ¯2 P (A)P(A) � P (A)P(A) P (A)P(A) � P (A)P(A)B b B b B b B b

Appendix C

To calculate the noncentrality parameter, , we begin with the calculation of the frequencies of the genotypesl2

at the two disease loci, in the affected population and in the control populations. It follows from the definition of
the genotype frequencies in the disease population that

P(D D ,affected) P(D D ,d d ,affected) � P(D D ,d d ,affected) � P(D D ,d d ,affected)1 1 1 1 1 1 1 1 1 2 1 1 2 2P (A) p pD D1 1 P(A) P(A)

( )P P f � P f � P fD D d d 1111 d d 1112 d d 11221 1 1 1 1 2 2 2

p .
P(A)
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Similarly, we have

( )P P f � P f � P fD D d d 1211 d d 1212 d d 12221 2 1 1 1 2 2 2

P (A) p ,D D1 2 P(A)

( )P P f � P f � P fD D d d 2211 d d 2212 d d 22222 2 1 1 1 2 2 2

P (A) p ,D D2 2 P(A)

( )P P f � P f � P fd d D D 1111 D D 1211 D D 22111 1 1 1 1 1 2 2

P (A) p ,d d1 1 P(A)

( )P P f � P f � P fd d D D 1112 D D 1212 D D 22121 2 1 1 1 2 2 2

P (A) p ,d d1 2 P(A)

( )P P f � P f � P fd d D D 1122 D D 1222 D D 22222 2 1 1 1 2 2 2

P (A) p .d d2 2 P(A)

Let be the probability that an individual with genotypes and is unaffected. By an argumentf̄ p 1 � f D D d dijkl ijkl i j k l

similar to that used above, we obtain

¯ ¯ ¯( )P P f � P f � P fD D d d 1111 d d 1112 d d 11221 1 1 1 1 2 2 2P(D D ,unaffected)1 1¯P (A) p pD D1 1 ¯P(A) 1 � P(A)

¯ ¯ ¯( )P P f � P f � P fD D d d 1211 d d 1212 d d 12221 2 1 1 1 2 2 2¯P (A) p ,D D1 2 1 � P(A)

¯ ¯ ¯( )P P f � P f � P fD D d d 2211 d d 2212 d d 22222 2 1 1 1 2 2 2¯P (A) p ,D D2 2 1 � P(A)

¯ ¯ ¯( )P P f � P f � P fd d D D 1111 D D 1211 D D 22111 1 1 1 1 2 2 2¯P (A) p ,d d1 1 1 � P(A)

¯ ¯ ¯( )P P f � P f � P fd d D D 1112 D D 1212 D D 22121 2 1 1 1 2 2 2¯P (A) pd d1 2 1 � P(A)

¯ ¯ ¯( )P P f � P f � P fd d D D 1122 D D 1222 D D 22222 2 1 1 1 2 2 2¯P (A) p .d d2 2 1 � P(A)

Now we calculate the expectation of the indicator variables and . Using the definition of the indicatorX Y11 11

variable, we have

E[X ] p P (A) � P (A) ,11 D D1 D D1 2 2

E[X ] p P (A) � P (A) ,12 d d1 d d1 2 2

¯ ¯E[Y ] p P (A) � P (A) ,11 D D1 D D1 2 2

¯ ¯E[Y ] p P (A) � P (A) .12 d d1 d d1 2 2
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Thus, the vector m can be calculated by . Next we calculate the variance-Tm p (E[X ] � E[Y ],E[X ] � E[Y ])11 11 12 12

covariance matrix . It is easy to see thatSA

2E[X ] p P (A) � P (A) ,11 D D D D1 1 2 2

2E[X ] p P (A) � P (A) ,12 d d d d1 1 2 2

E[X X ] p P(D D /d d FA) � P(D D /d d FA) � P(D D /d d FA) � P(D D /d d FA)11 12 1 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2

P (P f � P f ) � P (P f � P f )D D d d 1111 d d 1122 D D d d 2222 d d 22111 1 1 1 2 2 2 2 2 2 1 1p .
P(A)

Therefore, we obtain

2 2Var (X ) p E[X ] � (E[X ]) ,11 11 11

2 2Var (X ) p E[X ] � (E[X ]) ,12 12 12

Cov (X ,X ) p E[X X ] � E[X ]E[X ] ,11 12 11 12 11 12

and

Var (X ) Cov (X ,X )11 11 12S p .A [ ]Cov (X ,X ) Var (X )11 12 12

Appendix D

If we assume Hardy-Weinberg equilibrium, we find that it is not difficult to show that

¯¯ ¯m p E[X ] � E[Y ] p [P (A) � P (A)],Hj Hj Hj B Bj j

Cov (X ,X ) p d (A),′ ′H1j H1j jj

2Var (X ) p P (A) � P (A) p P (A)P (A),H1j B B B bj j j j

¯ ¯Var (Y ) p P (A)P (A),H1j B bj j

¯Cov (Y ,Y ) p d (A).′ ′H1j H1j jj

Thus, ; and . The noncentrality parameter is then given byTm p (m , … ,m ) S p (1/2)S S p (1/2)S l¯ ¯H H1 HK HA A HA A H

T �1 �12n 2n 1 1 1 a 1 1 n n 1 a¯ ¯A A A A Tl p m � S m p m � S m p l .¯ ¯� �H A A( ) [ ] ( ) [ ]2n � 2n 2 1 � a 2 1 � a 2 2 n � n 1 � a 1 � a¯ ¯A AA A A A
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